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Mapping Burn Extent of Very Large Wildland Fires from Satellite Imagery Using 
Machine Learning Trained from Localized Hyperspatial Imagery. 

Levandovsky, Enoch (Department of Mathematics and Computer Science) 
Hamilton, Dr. Dale (Department of Mathematics and Computer Science) 

 
Many wildland fire researchers are challenged to get an accurate burn acreage estimates 
of a wildland fire due to technology limitations. This research aids wildland fire 
researchers in determining the accuracy of mapping wildland fires by using sUAS (small 
Unmanned Aircraft System) imagery when comparing hyperspatial to sUAS imagery 
resampled to satellite scale resolution in. This project made the assumption that sUAS 
burn extent data was accurate. This assumption allowed for the resampled training data 
using fuzzy logic control as the method for improving satellite resolution data. The 
results showed that even though the resolution of imagery significantly drops, the 
accuracy of the burn extent remains relatively high throughout the burned area. Although 
sUAS imagery is likely more accurate given its resolution, acquiring satellite imagery is 
much more time efficient, cost efficient, and has a consistent history of clean data which 
serves as a great asset  towards mapping wildland fire compared to sUAS imagery. This 
thesis compares the accuracy of satellite imagery and sUAS imagery for wildland fire 
mapping. 
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1. Overview 

In mid-2014, Dale Hamilton Ph.D. studied methods to improve mapping of 

wildland fire with satellite imagery. He attempted to approach this challenge through 

utilizing sUAS drone imagery to create training data for a Support Vector Machine 

(SVM) model to classify burn extent and burn severity. However, his approach did not 

use raw data, but instead substituted satellite imagery for sUAS imagery resampled to a 

resolution that of a satellite. The research assessed whether burn extent and severity could 

be mapped more accurately using hyperspatial imagery acquired without a sUAS, than is 

possible using 30 m resolution imagery. Although this study successfully proved that 

sUAS imagery can be used to map wildland fire with satellite imagery with some loss of 

accuracy, it did not fully complete the process of applying it on actual satellite imagery. 

Hamilton’s presented his findings at IntelliSys in 2017 and published his methods in 

2018 (Hamilton, 2018). This research aimed to complete some of his proposed future 

research direction. 

This thesis is attempts to apply using sUAS imagery as training data to map 

wildland fire area using satellite imagery. The process utilized a combination of different 

methods and studies from the NNU FireMap research. Most of this research was 

completed using Python and the C++ languages. To allow for a smooth transition 

between each of the process, I choose Python as a scripting language. As for the version 

of python, I choose Python 2.7 as at that time ArcMap 10.7, a soon to be deprecated 

version, was created in Python 2.7. Many of the functions used in previous projects were 

not yet fully functorial in ArcMap Pro, the Python 3 version of ArcMap, at that time.  
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2. Publication 

This is a copy of the publication based off this research that was published in 

November of 2020 by the author, Dale Hamilton Ph.D., and Nicholas Hamilton. This 

Study describes an overview and the motivation of Dale Hamilton’s Ph.D. dissertation 

and the processes taken to obtain the accuracy of mapping out fire extent and burn 

severity using drone imagery. 

Abstract 

Wildfires burn 4–10 million acres annually across the United States and wildland 

fire related damages and suppression costs have exceeded $13 billion for a single year. 

High-intensity wildfires contribute to post-fire erosion, degraded wildlife habitat, and loss 

of timber resources. Accurate and temporally adequate assessment of the effects of 

wildland fire on the environment is critical to improving the of wildland fire as a tool for 

restoring ecosystem resilience. Sensor miniaturization and small unmanned aircraft 

systems (sUAS) provide affordable, on-demand monitoring of wildland fire effects at a 

much finer spatial resolution than is possible with satellite imagery. The use of sUAS 

would allow researchers to obtain data with more detail at a much lower initial cost. 

Unfortunately, current regulatory and technical constraints prohibit the acquisition of 

imagery using sUAS for the entire extent of large fires. This research examined the use of 

sUAS imagery to train and validate burn severity and extent mapping of large wildland 

fires from various satellite images. Despite the lower resolution of the satellite image, the 

research utilized the advantages of satellite imagery such as global coverage, low cost, 

temporal stability, and spectral extent while leveraging the higher resolution of 

hyperspatial sUAS imagery for training and validating the mapping analytics. 
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Published in Hamilton, D., Levandovsky, E., & Hamilton, N. (2020). Mapping 

Burn Extent of Large Wildland Fires from Satellite Imagery Using Machine Learning 

Trained from Localized Hyperspatial Imagery. Remote Sensing, 12(24), 4097. 

https://doi.org/10.3390/rs12244097 

2.1. Introduction 

This study examines the use of sub-decimeter hyperspatial imagery acquired with 

a small unmanned aircraft system (sUAS) to train machine learning algorithms to map 

wildland fire severity and extent from Landsat imagery. This effort increases the 

accuracy with which severity and extent can be mapped using hyperspatial imagery 

beyond the study area extent constraints observed due to the current technical and 

regulatory limitations resulting from the spatial extent of imagery that can be acquired 

using sUAS. Extending the usefulness of hyperspatial sUAS imagery beyond current 

flight extent restrictions will provide managers with increased actionable knowledge, 

leading to improved management decisions and increased ecosystem resilience.  

A century of fire suppression and fire prevention communities has led to the 

current departure of wildlands from fire return intervals typically experienced under pre-

European settlement conditions. Wildlands in the western United States (US) are 

experiencing a much higher incidence of catastrophic fires (Wildland Fire Leadership 

Council, 2014). Millions of hectares of western United States wildlands are impacted by 

wildland fire annually, with wildlands burned in some fire seasons exceeding four million 

hectares (Hoover, 2019), with suppression costs exceeding three billion dollars annually 

(National Interagency Fire Center, 2020). High-intensity wildland fires contribute to post-

fire erosion, degraded wildlife habitat, and loss of timber resources. This loss results in 

https://www.zotero.org/google-docs/?X8fmmE
https://www.zotero.org/google-docs/?X8fmmE
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negative impacts on ecosystem resilience as well as communities in the wildland-urban 

interface where 25,790 structures were burned in 2018 (Hoover, 2019), Additionally, 

wildland fires across the US claim more lives than any other type of natural disaster, 

resulting in the average loss of twenty wildland firefighters per year (NIFC, 2020b; Zhou 

et al., 2005). The 2018 Camp Fire in northern California alone resulted in 85 fatalities 

with estimates of insured losses running approximately ten billion dollars (Insurance 

Information Institute, 2020). Effective management of wildland fire is a critical 

dimension of maintaining healthy and sustainable wildlands. Actionable knowledge of 

the relationships between fuel, fire behavior, and the effects on the ecosystem and human 

development can help land managers develop elegant solutions to wildfire problems. 

Remotely sensed imagery is commonly relied on in assessing the impact of fire on the 

ecosystem (Eidenshink et al., 2007). The knowledge gained from remotely sensed data 

enables land managers to better understand the effects fire has had on the landscape and 

develop a more effective management response facilitating ecosystem recovery and 

resiliency. 

2.1.1. Background 

Although researchers face many challenges in understanding fire behavior and its 

corresponding effect, we investigate the improvements of what changing data resolution 

creates when analyzing wildland fires. The improvement with which wildland fire 

severity and extent can be mapped from medium resolution satellite imagery using 

machine learning trained from hyperspatial sUAS imagery relied on previously published 

efforts, including identification of the ecological factors of interest, identification of 
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current methods of mapping wildland fire extent, and utilization of sUAS as a remote 

sensing vehicle. 

2.1.1.1. Wildland Fire Severity and Extent 

The term “wildland fire severity” can refer to many different effects observed 

through a fire cycle, from determining how intense an active fire had burned to the 

ecosystem’s response to the fire over the subsequent years. This study investigates the 

direct or immediate effects of a fire, such as biomass consumption, as observed in the 

days and weeks after the fire is contained (Keeley, 2009). Therefore, this study defines 

burn severity as the measurement of biomass (or fuel) consumption (Key & Benson, 

2006). 

“Wildland fire extent” refers to the area in which a wildland fire has consumed 

organic material. Identification of burned area extent within an image can be achieved by 

exploiting the spectral separability between burned organic material and unburned 

vegetation (Hamilton et al., 2017; Lentile et al., 2006). Patchiness examines the fire’s 

spatial completeness within the extent of the fire, examining how much biomass remains 

unburned within the fire perimeter (Morgan et al., 2001). This study defines burn extent 

as the area within which a fire has consumed organic materials, omitting the unburned 

islands of vegetation within the burned area perimeter. 

Vector-based digitization of fire perimeters: Burn extent is often recorded as a 

polygon geospatial feature, recorded by a global navigation satellite system (GNSS) 

either from a helicopter flying along the perimeter of a fire or by ground-based mapping 

of the fire-edge with a handheld GNSS receiver. For the pilot, the burned area edge can 

be difficult to discern, especially when high vegetation canopy closure and shadows 

https://www.zotero.org/google-docs/?u9jPH8
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reduce visibility of surface vegetation from above. For ground-based personnel mapping 

the burned area either on foot or from a motorized vehicle, following the perimeter can be 

complicated by both rough terrain and the non-uniform manner in which wildland fire 

burns across the landscape. Most wildland fires contain islands of unburned vegetation 

dispersed throughout the burned area, ranging in size up to hundreds of hectares. These 

unburned islands are typically not mapped due to safety concerns as well as the 

impracticality of traversing the edge of each of these islands either aerially or on the 

ground. Even an extinguished fire can be a dangerous environment for humans to work 

in. Structurally unsound trees are known to fall upon and injure or kill unsuspecting 

people. Additionally, the patchy, convoluted edge of the fire can often be hard to 

delineate from the ground, let alone from a manned aircraft (Kolden & Weisberg, 2007).  

Raster-based mapping of burn extent and severity: The most common metric used 

for mapping wildland burn severity from medium satellite imagery is the normalized burn 

ratio (NBR) which is the normalized difference between the near-infrared (NIR) and 

shortwave infrared (SWIR) bands  (Key & Benson, 2006), calculated as: 

𝑁𝐵𝑅 =
(𝑆𝑊𝐼𝑅 − NIR)

(SWIR + 𝑁𝐼𝑅)
 (1) 

  

While NBR is effectively used for burn severity mapping, differenced NBR 

(dNBR), calculated as pre-fire NBR (NBRpre) minus post-fire NBR (NBRpost) 

(Eidenshink et al., 2007), has been found to have a stronger indicator to burn severity 

than just NBRpost alone (Escuin et al., 2008). Satellite imagery is a useful dataset from 

which to calculate dNBR due to the ability to obtain pre-burn imagery corresponding to a 

study area containing an unplanned wildland fire.  
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The Landsat program has been provided continuous satellite coverage of the earth 

at 30 m resolution since 1982, providing 38 years of imagery from which to extract fire 

history data. The US Departments of Agriculture and Interior maintain the Monitoring 

Trends in Burn Severity (MTBS) program to map burn perimeters and severity across the 

US starting in 1984. The MTBS program maps wildland fires across the US using dNBR  

(Eidenshink et al., 2007). Due to a large number of fires across the US, the MTBS 

program only maps fires exceeding 400 hectares in the western US and exceeding 200 

hectares in the eastern US  (USDA Forest Service Geospatial Technology and 

Applications Center (GTAC), 2020). With the offset in the orbits of Landsat 7 and 8, 

Landsat’s 8-day flyover interval, easily allows analysts to access bi-temporal imagery 

preceding the fire for NBRpre and post-fire for NBRpost. In the event the fire study area 

was obscured by clouds or smoke during a pass-over, another scene can be used from 

either the preceding pass-over for NBRpre or in a succeeding pass-over for NBRpost as 

necessary. While MTBS is extensively used for mapping large fires across the US, it has 

been shown to overestimate the burn extent by four to sixteen percent due to 

oversimplification of burned area polygons and not mapping large unburned islands 

(Sparks et al., 2015). 

2.1.1.2. On Origins of Fires Used in This Study 

As for the data used in this research, this study utilized a set of fire data from 

previous similar research efforts. The wildfire burn areas used in this study are a 

collection of medium to large size fires in southwestern Idaho ranging from xeric 

sagebrush steppe fires located within the United States Department of Interior Bureau of 

Land Management Boise District to the mesic upper Payette and Boise River watersheds 
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in the United States Department of Agriculture Forest Service Boise National Forest. The 

naming schema for these fires, as displayed in Table 1, are usually determined by a 

nearby notable landmark such as a creek or a hill. For example, the Hoodoo fire burn area 

burned near and across the Hoodoo Creek near Idaho City, Idaho. Typically, these names 

were the official names of these fires assigned by the local jurisdiction and used by 

dispatchers. The locations of the burned areas of which acquisition flights were 

conducted are shown in Figure 1.  

 

Figure 1. Geographic distribution of wildland fires over which post-suppression image acquisition 
flights were conducted in southwestern Idaho. 



9 
 

2.1.1.3. Utilization of sUAS for Mapping Wildland Fire 

The proliferation of small unmanned aircraft system technology has made the 

procurement and use of remotely sensed imagery a viable possibility for many 

organizations that could not afford to obtain such data in the past. A small unmanned 

aircraft system (sUAS) is a designation given by the US Federal Aviation Administration 

to UAS that weigh between 0.25 kg and 25 kg (FAA, 2020). Most commercially 

available sUAS come with an onboard digital camera, a multi-spectral sensor with three 

bands capturing visible light in the blue, green and, red spectrum ranging from 400 nm to 

700 nm (Lebourgeois et al., 2008). Spectral responses in the visible spectra can be used to 

differentiate between different image features such as white and black ash (D Hamilton et 

al., 2017; Dale Hamilton et al., 2019; Lentile et al., 2006) and other features of interest to 

fire managers such as vegetation type (D Hamilton et al., 2017; Rango et al., 2009).  

New advances in sUAS capabilities enable imagery acquisition with a spatial 

resolution of centimeters and temporal resolution of minutes (Laliberte, 2010). The 

temporal responsiveness of acquiring imagery with a sUAS is significantly increased due 

to the increased availability of the sUAS being able to be flown at any desired time as 

opposed to Landsat imagery which can only be acquired when the satellite flies over the 

scene every 16 days, assuming the scene is not obscured by smoke or clouds during the 

flyover. However, although a manned aircraft can be a viable alternative, United States 

governmental agencies update their aerial manned photography through programs such as 

the Department of Agriculture National Agricultural Imagery Program every few years. 

However, this is nowhere near the update frequency of satellite imagery as needed in this 

experiment. In comparison to sUAS, on-demand manned aircraft aerial photography is 
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far more expensive, with rental costs for manned aircraft running thousands of dollars per 

hour. High-resolution imagery was only needed on-demand and therefore sUAS imagery 

was the best temporally responsive and cost-effective solution to the US land 

management agency regulatory need to acquire post-fire data including mapping burn 

extent and fire effects within 14 days after fire containment.  

Aerial imagery for this project was acquired with a DJI Phantom 4 with a 12-

megapixel color camera. The imagery acquired with the sUAS was taken while flying at 

an altitude of 120 m above ground level (AGL), giving the photos a spatial resolution of 

5 cm per pixel (Key & Benson, 2006). Objects that are wider than that pixel resolution 

will be discernible in the acquired hyperspatial imagery as shown in Figure 2a. The black 

rectangles in the image are burned areas. Small lines and patches of white within the 

burned area are white ash from sagebrush which was fully combusted by the fire. The 

unburned vegetation consists primarily of annual and perennial grasses and forbs, 

Wyoming big sagebrush (Artemisia tridentata spp. Wyomingensis), and yellow 

rabbitbrush (Chrysothamnus viscidiflorus). The scene shown in Figure 2 contains two 

western juniper trees (Juniperus occidentalis spp. occidentalis). 
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Figure 2. (a) Image of a rangeland study area acquired with a Phantom 4 sUAS flying at 120 m 
AGL with a spatial resolution of 6 cm per pixel. (b) Same scene resampled to 30 m resolution 
with six rows and eight columns of pixels (Hamilton, 2018). 

Features easily identified in hyperspatial (5 cm) imagery are lost in medium 

resolution (30 m) Landsat satellite imagery, being aggregated into more dominant 

neighboring features. Figure 2b shows the same scene as the preceding image but 
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resampled to 30 m spatial resolution having 48 pixels aligned in six rows by eight 

columns. Mapping burn severity and extent was found to have significantly lower 

accuracy when using imagery with 30 m spatial resolution such as Landsat than was 

found with hyperspatial imagery acquired by flying the sUAS over the burned area (Dale 

Hamilton et al., 2019). While burn severity and extent can be mapped with much higher 

accuracy using hyperspatial imagery acquired with a sUAS, this research team found that 

current technical and regulatory constraints on drone usage realistically will only allow 

for the acquisition of up to 600 hectares per day (Goodwin & Hamilton, 2019). That same 

flight extent would be a small part of a single Landsat scene. To effectively map large 

class F (>400 ha) and G (>5000 ha) fires (NWCG, 2020), a larger and more efficiently 

acquirable imagery satellite system such as Landsat still needs to be utilized to obtain a 

large enough analysis extent to map the whole fire. 

2.1.1.4. 30-Meter Burn Severity Mapping Analytics Trained with Hyperspatial 
Classification 

In evaluating the effects of spatial resolution on burn severity and extent mapping 

accuracy, Hamilton (Hamilton et al., 2019) established the following methodology which 

enabled the use of hyperspatial burn severity classes of unburned vegetation, black ash 

and white ash as classified using a Support Vector Machine (SVM) (Dale Hamilton, 

2018) for training machine learning algorithms to map burn severity from medium 

resolution (30 m) imagery. This previous effort evaluated only the effect of spatial 

resolution on mapping accuracy, using 30 m imagery that was resampled from the 

hyperspatial imagery acquired with the sUAS, thereby removing other variables from 

consideration which could affect accuracy, such as sensor radiometric resolution, 

atmospheric influence, and temporal resolution. Machine learning classifiers mapped 
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burn severity and extent from 30 m imagery separately, and were trained using 

hyperspatial burn severity and extent classifications using the following methods: 

1. Hyperspatial orthomosaics (5 cm) were resampled to have medium resolution of 

30 m (30 m), which is an equivalent spatial resolution to Landsat imagery, with 

the spatial reference for the 30 m imagery being calculated from the spatial 

reference from the 5 cm orthomosaic. 

2. Labeling 30 m training pixels using fuzzy logic by: 

a. Calculating 5 cm burn severity class pixel density within each 30 m pixel, 

where density is the percentage of 5 cm pixels for a specific class that are 

found within the containing 30 m pixel.  

b. Applying fuzzification, the post-fire class density is used to establish where 

fuzzy set membership transitions from 0 to 1 over a range of values. Burn 

extent transitioned from unburned to burned between 35 and 65 percent of 5 

cm pixels being unburned as shown in Figure 3. Burn severity transitioned 

between low biomass consumption and high biomass consumption between 

33% and 50% (Lewis et al., 2008) of burned pixels being classified as white 

ash as shown in Figure 4. 
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Figure 3. Burn extent fuzzy set showing fuzzy set membership of 30 m pixel transition between 
Unburned and Burned from 35 to 65 percent of 5 cm pixels being classified as burned. 

 

 

Figure 4. Biomass Consumption fuzzy set showing fuzzy set membership of 30 m pixel transition 
between Low and High Biomass Consumption from 33 to 50 percent of 5 cm burned pixels being 
classified as white ash. 
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c. Activate fuzzy rules by applying fuzzy logic. When evaluating a series of 

fuzzy if statements, as shown in Figure 5, the data is defuzzified by selecting 

for activation the action associated with the if expression that has the highest 

value where a fuzzy AND is evaluated as taking the minimum value of either 

of the associated operands. 

 

Figure 5. Fuzzy logic algorithm for labeling 30 m pixels from 5 cm burn severity classes. 

3.  Each of the 30 m pixels was labeled with training data labels with the SVM 

training on 70 percent of the 30 m training pixels. The remaining labeled 30 m 

pixels withheld for validation of the SVM. 

2.2. Materials and Methods  

In order to complete the goal of this effort, a method was developed which 

mapped and analyzed wildland fire extent using spatial satellite imagery. This was done 

by converting high-resolution hyperspatial training data to a lower resolution training 

data using fuzzy logic. This created satellite resolution training data and enabled the burn 

extent to be determined and analyzed from satellite imagery using an SVM. Although this 

experiment will be using Landsat 8 imagery in particular, this method is not bound to any 

specific earth-observing satellite and can be applied to any spatial imagery provided the 

correct format. The fires used in the research were from the same set of fires used from a 

previous study (Hamilton, 2018; Hamilton et al., 2019) as mentioned in Section 1.1.2. 
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Hamilton (Hamilton et al., 2019) mapped wildland fire burn-extent from 

hyperspatial data with an accuracy of up to 98% on 5 cm pixels. For this experiment, 

hyperspatial training data will be assumed to be an adequate reference point when 

determining the accuracy of the SVM on the 30 m spatial imagery. This assumption 

enables the experiment to use hyperspatial training data resampled to satellite resolution 

training data using fuzzy logic. This experiment also investigated the effect different 

spectral bands have on burn extent and severity mapping accuracy. 

2.2.1. Assembling Spatial Extent Burn Indicator 

As mentioned before, one of the objectives of the application of this experiment 

was to provide an efficient and a more consistent method of running the experiment so 

that the results of the experiment were consistent and adequate to analyze using the 

scientific method. Thus, an application was assembled to evaluate the data in a consistent 

manner. The application for this experiment is divided into four sections. The first part of 

the application adjusts the geoposition alignment of the hyperspatial and satellite 

imagery. The second part utilizes an SVM to create hyperspatial training data from 

hyperspatial imagery. The third part converts hyperspatial training data into satellite 

resolution spatial training data using fuzzy logic. The final part of the application runs the 

SVM on the satellite scene using the newly created training data. This application will 

provide an effective and efficient way to analyze accuracy impact. 

2.2.1.1. Coregistering Hyperspatial and Medium Resolution Images 

Before resampling the resolution of the training image, acquired with an sUAS, 

from hyperspatial resolution to satellite medium resolution, such as is acquired by the 

Landsat Satellite project, preprocessing and imagery alignment is required to establish 
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alignment with the smaller pixels and the larger medium resolution image pixels. The 

first alignment step reprojects the imagery so the hyperspatial image and the medium 

resolution image have the same spatial reference. In Figure 6, the projection for the 

medium resolution image (orange) and the hyperspatial sUAS image (blue) have different 

spatial references, making the pixel boundaries misaligned between the two images. 

 

Figure 6. Medium resolution satellite image pixels (orange) and hyperspatial sUAS image pixels 
(blue) prior to reprojection. 

Reprojection to the same spatial reference results in pixel boundaries that are 

aligned between the images as shown in Figure 7. 
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Figure 7. Example of projection before the border is added. 

Once the pixel boundaries are aligned between the hyperspatial and medium 

resolution images, the medium resolution image is cropped so it only contains pixels that 

overlap the hyperspatial image. At that point, the extent of the hyperspatial image does 

not correspond to pixel boundaries, as is shown by the white space between the blue 

pixels and the boundary of the overlapping orange pixel in Figure 6. The extent of the 

hyperspatial image needs to be expanded out to the edge of the clipped medium 

resolution image. Additional rows and columns of null pixels are added around the 

hyperspatial image using OpenCV, expanding the extent of the hyperspatial image until it 

corresponds to the pixel outer pixel boundaries of the overlapping medium resolution 

pixels, which are shown in green in Figure 8. 
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Figure 8. Example of projection after the border is added. 

Once the additional rows and columns of null pixels are added to the hyperspatial 

image, the spatial resolution of the hyperspatial image is adjusted to account for the 

addition of the new null pixels around the perimeter of the orthomosaic as shown in 

Figure 9. 



20 
 

 

Figure 9. (a) sUAS orthomosaic rendered on top of clipped Landsat image; (b) sUAS orthomosaic 
with a buffer of null pixels giving it the same extent as the clipped Landsat image. Red polylines 
represent roads and trails. Blue polylines represent creeks. Black hatched polyline represents a 
historic railgrade. 
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2.2.1.2. Creating Hyperspatial Training Data 

Once all the spatial imagery was aligned, the hyperspatial imagery burn extent 

and severity were mapped separately using a support vector machine. The training data 

used for the hyperspatial imagery was from a data set that had previously been processed 

while mapping burned areas over multiple years, with accuracy ranging up to 98% 

(Hamilton, 2018; Hamilton et al., 2019). After burn severity and extent were mapped, the 

data was denoised using image morphology, reducing sub-object sized noise (Gonzalez, 

2008). An example of this noise reduction on the burn extent is shown in Figure 10. The 

output would then be used as hyperspatial burn extant data resampled to satellite 

resolution burn extent data used as training data in the next section. A similar process was 

done with the severity case and the images were combined using the logic mentioned in 

Section 1.1.4. 
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Figure 10. Comparison of Hyperspatial classification with its Denoised Output. White pixels are 
the burned data and the black pixels are the unburned data. (a) example of an image before 
denoise tool is applied; (b) example of an image after denoise tool is applied. These images are a 
post processing view of the bitmap output data with each pixel containing one class value Burned 
or Unburned. 

2.2.1.3. Resampling Training Data to 30 m Using Fuzzy Logic 

After generating the hyperspatial burn severity output, fuzzy control was used to 

label overlapping medium resolution pixels to be used for training an SVM to map burns 

from satellite imagery. Fuzzy logic allows decisions to be based on imprecise boundaries 
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rather than relying on precise boundaries that are used by Boolean logic. This use of 

vagueness allows the expression of how much the data fits given criteria, transitioning 

from one class to another over a range of values. Fuzzy logic is often more applicable to 

ecological data than the crisp delineations resulting from Boolean logic, where data will 

transition from one class to another at a single threshold value.  

The fuzzy set theory allows the specification of how well an object satisfies a 

vague criterion (Russell & Norvig, 2010) with fuzzy logic providing a means for 

specifying that the transition from one class to another is not demarked at a single value 

but transitions from one class to another over a range of values (Han, 2012). For example, 

Hamilton (Hamilton, 2018) defined the transition from low to high biomass consumption 

as occurring between 33 and 50 percent of burned pixels being classified as white ash as 

shown in Figure 4. Rather than set membership being expressed as either zero or one, as 

is the case with Boolean logic, fuzzy logic allows set membership to be specified as a 

range of membership from 0.0 to 1.0. For example, using these thresholds, a plot with 40 

percent white ash cover from the Biomass consumption fuzzy sets shown in Figure 3 

would have 0.41 membership in the high biomass consumption set and 0.59 membership 

in the low biomass consumption set as shown in Figure 11. 



24 
 

 

Figure 11. Biomass Consumption Fuzzy Set Membership. With 40 percent White Ash Cover 
denoted by the dotted line, there is 0.41 membership in High Biomass Consumption and 0.59 
membership in Low Biomass Consumption. 

Assignment of the post-fire burn extent and severity classes to a 30 m pixel is 

based on a combination of whether the pixel burned and white ash cover within the pixel. 

In neither case is Boolean logic appropriate for determining set membership. Increasing 

the density of a class by a handful of 5 cm pixels and as a result changing a Boolean 

expression from false to true does not adequately describe the state of the pixel. As 

mentioned in the background, the first set of data to be evaluated was between the burned 

and unburned sets, with the burned set consisting of the combination of pixels classified 

as either burned or unburned. The fuzzy logic transition for these criteria from 5 cm 

pixels to 30 m was from 35% to 65% (Hamilton, 2018), as previously shown in Figure 3. 
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An additional set membership was used that measured biomass consumption, 

which evaluated the relationship between the density of black ash and white ash. The 

white ash cover was expressed as a percentage of white ash to burned (white and black 

ash) pixels, transitioning between low and high biomass consumption over a transition 

from 33% to 50% (Hamilton, 2018; Goodwin, 2019), as previously shown in Figure 4. 

Fire biomass consumption needed to be only evaluated on the burn extent, and 

thus any white ash detection outside of the burned boundaries was disregarded. This filter 

could be applied using fuzzy logic to fuzzy set membership, a fuzzy AND is expressed as 

taking the minimum value of the expressions on either side of the AND operator. 

Likewise, a fuzzy OR is expressed as taking the maximum value of the expressions on 

either side of the OR operator. When evaluating a series of fuzzy IF statements, as 

previously shown in Figure 5, the data are defuzzified by selecting for activation the 

action associated with the IF expression with the highest value. 

After the fuzzy logic was applied, the data would be converted into 30 m training 

data by taking the most dominant set as determined by the fuzzy logic control and was 

labeled either white ash, black ash, or unburned accordingly. Since the snapping software 

aligned all the images, the newly created training data from the fuzzy logic training data 

came out aligned with the associated satellite scene and would be ready to train an SVM 

using Landsat imagery, which had been labeled using fuzzy logic on the hyperspatial 

burn extent and severity classifications as described above. After the training data were 

created, one third of the training data were set aside as validation data to test the 

classifier’s accuracy.  
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2.2.1.4. Running the SVM on the Satellite Scene 

After the satellite scene training data was created, the satellite scene and the 

newly created satellite resolution training data was used as the input into the SVM. 

However, before running the SVM the spatial training data was clipped to balance out the 

burned and unburned pixels for consistency across fires. This clipping was necessary to 

balance for the ratio between burned and unburned pixels is normalized between 45–

55%. Balancing the burned and unburned pixels was done because most of the selected 

fires used in this experiment had an imbalance burned and unburned pixel ratio where the 

unburned pixels numerically dominated the burned pixels. Thus, a solution was 

developed through an algorithm that repeatedly stripped off each side until the ratio was 

met. This solution would be sufficient to the imbalance issue because most of the edge 

pixels were predominantly burned pixels in all the fires that were used. After 

preprocessing was complete, the SVM would create a TIF image of the fire’s burn extent 

and severity through 30-m resolution. 

2.2.1.5. Collecting Results 

Once the SVM finished classifying, an output image of the entire satellite scene 

was produced. A simple testing program was developed to analyze the SVM’s accuracy 

when it mapped burn extent and severity on a satellite. Once the data was normalized, all 

the pixels were compared with the training data, and the equation shown in Equation (2) 

was applied to determine the accuracy of the SVM’s burn extent. 

𝐸𝑥𝑡𝑒𝑛𝑡𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
|𝑇𝑟𝑢𝑒𝑃𝑖𝑥𝑒𝑙𝑠|

|𝑇𝑜𝑡𝑎𝑙𝑃𝑖𝑥𝑒𝑙𝑠|
 (2) 

However, to determine burn severity accuracy, only the white ash and black ash 

pixels were evaluated. Thus, all unburned pixels were omitted, and the accuracy 
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calculation applied accuracy validity to white and black ash pixels, as shown in Equation 

(3). 

𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
|𝑇𝑟𝑢𝑒𝐵𝑙𝑎𝑐𝑘𝐴𝑠ℎ|  +  |𝑇𝑟𝑢𝑒𝑊ℎ𝑖𝑡𝑒𝐴𝑠ℎ|

|𝑇𝑜𝑡𝑎𝑙𝐵𝑢𝑟𝑛𝑒𝑑𝑃𝑖𝑥𝑒𝑙𝑠|
 (3) 

2.3. Results 

A set of fires previously used by Hamilton in (Hamilton, 2018; Hamilton et al., 

2019) was selected for analysis. The estimated accuracy of mapping out burn severity 

using color satellite imagery (comprised of red, green, and blue spectral bands) in 

comparison to the high-resolution results from color imagery, as shown by Hamilton 

(Hamilton, 2018), is shown in Table 1. 

 

 5 cm Extent 30 m Extent Results 5 cm Severity 30 m Severity Results 

Elephant 98.5 58.52 98.67 95.30 

MM106 86.58 71.5 98.68 100 

Hoodoo 99.29 73.92 95.22 41.50 

Immigrant 98.34 77.67 97.97 100 

Jack 94.74 57.09 96.97 19.06 

Owyhee 87.65 85.40 87.42 100 

Mean 93.32 73.116 95.252 72.112 

Table 1. Experiment Results Compared with the 5 cm from (Hamilton, 2018; 

Hamilton et al., 2019). 

This experiment also investigated how the accuracy would change if color 

satellite imagery were replaced for a set of infrared (IR) bands. The IR imagery 

comprised the following Landsat bands: shortwave infrared 1 (0.156–1.660 µm), 
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shortwave infrared 2 (2.100–2.300 µm), and near infrared (0.845–0.885µm) (NASA, 

2020). The results of this experiment are shown in Table 2. 

 30 m Color Extent 30 m IR Extent 30 m Color Severity 30 m IR Severity 

Elephant 58.52 55.95 95.30 97.83 

MM106 71.5 69.1 100 100 

Hoodoo 73.92 71.75 41.50 36.48 

Immigrant 77.67 78.19 100 100 

Jack 57.09 56.68 19.06 17.40 

Owyhee 85.40 56.61 100 N/A 1 

Mean 70.68 64.71 75.98 70.34 

Table 2. Color Experiment vs IR Experiment. 1 The fire was too small for the experiment to 
detect any white ash. 

2.4. Discussion 

This experiment’s results did not converge to a specific accuracy, but instead the 

accuracy varied across fires. This was expected as many of the fires used in the 

experiment varied in severity, differed between forest and grass fire, had different 

atmospherical conditions, and varied in canopy cover. For example, the Elephant fire had 

a thin layer of cloud haze above it, which skewed off the color balance to be higher, 

which decreased the SVM’s accuracy of detected darker burned pixels. Although each 

image may have one or multiple of these challenges, these problems were addressed 

through many various methods during the development of the experiment. However, all 

could not be met seamlessly. One of these challenges, such as the canopy cover, was 

addressed by applying the denoise tool, as previously shown in Figure 10. This tool 

would allow an unburned tree canopy and other smaller unburned objects with burned 

pixels around it to be marked as noise and replaced in with burnt pixels. Another 
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challenge pertaining to the atmospherical condition was based on the fact that each 

satellite image, covering the same spatial area, had slightly different solar lighting, 

atmospheric density, and moisture. This color imbalance problem was solved by utilizing 

different hyperspatial training imagery for every fire in the experiment, although the 

separate training data were all created a consistent way. Ideally, the experiment should 

not need separate training data for each fire. Without creating separate training data for 

each fire, the experiments overall accuracy plummeted from color imbalance from 

atmospheric interference. Although bear in mind that each of the separate training was 

generated a consistent way as done by Hamilton (Hamilton et al., 2019). However, 

creating separate training data is necessary because each satellite image has its own 

unique state. Future work could create a single set of training data that is cross-

compatible with all fires, which will account for the ecological, atmospherical, and 

temporal setting of the fire. 

As shown in Table 1, the experiment results for the 30 m burn extent shows that 

the accuracy of mapping burn extent from a satellite image using hyperspatial training 

data has a mean of 71% of 30 m extent results accuracy. The accuracy of the burn extent 

of the 30 m was expected to be lower than the accuracy of the 5 cm burn extent 

(Hamilton, 2018). Many factors could impair the accuracy level. One of these factors 

include is the satellite image had a lot of atmospheric dissidence, which caused the sUAS 

training data to pick up far more unblemished data as previously discussed. Another of 

these factors includes that most of these fires were considered small fires and included 

many edge cases as shown in Figure 12. These edge cases would severely decrease the 

accuracy level of smaller fires. Therefore, accuracy is expected to increase when mapping 

https://www.zotero.org/google-docs/?nuNDVO
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larger wildland fires. To increase the overall accuracy of this experiment, future edge 

case analysis can be done to significantly increase the accuracy of mapping out wildland 

fires with satellite imagery. 

 

Figure 12. Some error analysis concluded that most False Positives or Negatives, indicated in red, 
are predominately located at the edge of the burn area. 

Observing the IR experiment in compared to the RGB experiment, a decrease in 

accuracy is observed. However, this is contradictory to what was expected (Key & 

Benson, 2018). The accuracy decreases, for the most part, is slight, and after further 

analysis most of the error falls on the SVM edge cases similar to what is shown in Figure 

12. A solution for this error is to use IR imagery hyperspatial and spatial imagery in this 

experiment, which theoretically will decrease error. However, this is left for future work. 

However, since the experiment was done on parts of the burn area where edge cases are 
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predominately located, theoretically, the SVM would have better accuracy on a larger fire 

as the ratio between edge pixels and non-edge pixels is decreased. 

2.5. Conclusions 

This experiment successfully applied sUAS hyperspatial data to be used as 

training data to map out the burn extent on a satellite imagery. As shown in Table 2, the 

experiment went further than just using color imagery to determine accuracy. This 

experiment has also applied IR spectroscopy imagery in which has been previously 

proven to improve fire mapping; thus, results were expected to improve (Key & Benson, 

2006). However, as previously discussed, the IR experiment results proved contradictory 

to what was expected and previous work (Key & Benson, 2006). Thus, it was assumed 

that the issue could be readdressed by using IR hyperspatial training data for the IR 

imagery as previously discussed. 

One of the research goals was to determine the change in accuracy of burn extent 

mapping between the hyperspatial imagery and satellite imagery. The tool was created 

and tested on this experiment which showed improved accuracy from 5 cm to 30 m. 

However, for future work, one could take this research further by determining how the 

decrease in the resolution would decrease the accuracy of fire extent and severity 

mapping. This knowledge could enable future researchers to quickly and accurately 

determine which resolution would best fit their area of research, given their resources and 

budget constraints. 

*Source code developed as well as data used in this effort are available for download at 
https://firemap.nnu.edu/satellite-burn-mapping. 

 

Implications for Local Management 
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Improved mapping of fire effects resulting from the development of methods, 

analytic tools, and metrics resulting in increased fire effects mapping accuracy will 

improve fire management. These improvements affect post-fire recovery planning and 

other management operations, which are driven by the extent of the fire and how much 

biomass was consumed by the fire. Development of post-fire recovery plans includes 

outlining the restoration activities that determine management response to the fire, 

facilitating ecosystem recovery and resiliency (Eidenshink, 2007). In order to reduce 

risks to affected resources, managers will also need increased capacity to determine 

potential effects on neighboring resources such as hydrologic features, infrastructure, and 

wildlife habitat.  

Existing data about vegetation within the perimeter of a fire are rendered obsolete 

because of a disturbance such as a wildland fire. Increasingly accurate burn extent and 

biomass consumption mapping will improve efforts to update geospatial vegetation layers 

such as existing vegetation type, cover and height to accurately reflect fire fuel data 

following a wildland fire (Eidenshink, 2007).  

Improved mapping will also result in more complete fire history data, facilitating 

the inclusion of the spatial extent and biomass consumption of small fires which are 

commonly omitted from fire history data (Hamilton, 2018). The inclusion of knowledge 

about small fires will reduce the omission of the most ecologically diverse areas burned 

within a landscape (Hamilton & Hann, 2014). Additionally, calculations will be improved 

for the departure of current fire frequency from historical fire frequency, a key metric for 

determining ecosystem resilience (Bowerman & Bowerman, 2014). 
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2.6. Future Work 

This research was unique in a way that the initial intent was to pave a path for 

future research. As discussed, prior, each satellite scene has its own unique solar lighting, 

atmospheric density, and moisture effect. This variance across each fire would cause a 

shift in the pixel values for each of the classes used in this experiment. For example, a 

burned pixel from a satellite image in early June may have a SWIR value of 1000, but in 

late August, the SWIR value of a burned pixel in a satellite image may have a value of 

700. This could be caused by the solar position during the time of year, the lack of 

moisture towards the end of the year, and random atmospheric concentration. To solve 

this problem, one could calibrate the experiment by utilizing ground objects known to 

remain consistent throughout the year, such as pavement or lakes. Taking those base 

values to calibrate each satellite image could fix the problem and avoid utilizing different 

training data for each fire experiment. However, due to complexity, alternatively, a 

consistent set of hyperspatial data was used to create the satellite training data instead, as 

shown in Section 2.2.2. 

Another challenge that occurred was the color images showing better accuracy 

than the IR images. As mentioned before, this is contradictory to previous work (Key & 

Benson, 2006). However, as mentioned previously, most of the inaccuracy occurred at 

the edge cases, as shown in Figure 12. Thus, to improve accuracy, more work on edge 

case analysis can be done, which could significantly improve the experiments accuracy. 

However, due to data and time constraints, this was left off for future work. 
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3. Epilogue 

Since the publication, I have acquired a lot of skills in which will facilitate future 

analysis. For example, when running tests, the whole process could take 10 minutes to 

complete and any error could result a lengthy debugging process. Utilizing Jupiter 

Notebook scripting allows you to save data value between run in which would 

significantly shorten the process for debugging and extensive testing. 

As mentioned in the future work sections, incorporating IR satellite imagery to 

map fire extent will be useful. Although I  created a method in which one could using a 

combination of up to five different spectral bands to keep the results of the research 

focused, I only posted the results of RGB imagery and briefly discussed the results of 

utilizing IR imagery. Although the process is setup and ready to use different spectral 

bands and resolutions, which will some of the future work can include using different 

bands, make the process more user friendly, and testing accuracy increase on different 

satellite resolution. Some of these studies I have begun, but I quickly realized that it 

could be a whole study of its own in which led me to decide to leave it off for future 

work. 
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5. Code 

1. import os 

2. import sys 

3. import re 

4. import arcpy 

5. import shutil 

6. from os import path 

7. from arcpy import env 

8. from arcpy import management 

9. from arcpy.sa import * 

10. import csv 

11. import random 

12.  

13.  

14.  

15.  

16.  

17. ###########################INPUT############################## 

18. outFolder = "C:\Users\Enochlev\Documents\Output" 

19. exePath = "C:\Users\Enochlev\Documents\SourceFolder" 

20. fireName = "Immigrant" 

21. hypImg = "C:\Users\Enochlev\Documents\ArcGIS 10.7\IR Immigrant 

Test\immigrant_clip_svm_cons.tif" #Future work will make this hard coded to  "\"" + 

exePath + "\"HyperTrainImg.tif\"" with image normalizer for the landsat 

22. SataliteScene = "C:\Users\Enochlev\Documents\ArcGIS 10.7\IR Immigrant Test\Dont 

Test\\4.tif" 

23. #hypClass = "C:\Work\Enochs_Inputs\\5_Output.tif" Should be created within this 

experiement, unless found inside exePath 

24. bandslocation="C:\Users\Enochlev\Documents\ArcGIS 10.7\IR Immigrant test" 

25. SkipMainPictureTraining = True#if true then output_5.tif will be found in exepath 

folder... will save 4-5 minutes of proccessing time 

26.  

27.  

28. ###########################INPUT############################## 

29.  

30.  

31.  

32. #Written By dale from spatialRes.py 

33. def transferSpatialGeoRefDir(source_tif, target_folder): 

34.     #    Transfer spatial reference information and georeference from a a source raster to 

a set of 

35.     #    other rasters that have the same spatial reference values, but for which that 

36.     #    information is  not defined 
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37.     #    Use when spatial resolution is the same 

38.  

39.     print ("import Spatial Ref & Georeference") 

40.  

41.     # create world file from source raster 

42.     management.ExportRasterWorldFile(source_tif) 

43.     src_world_file = re.sub('\.tif$', '.tfw', source_tif) 

44.  

45.     # get source raster projection 

46.     src_tiff_srs = arcpy.Describe(source_tif).spatialReference 

47.  

48.     for tiff in os.listdir(target_folder): 

49.         if re.match('.+\.tif$', tiff): 

50.             # rename and copy world file to target tiffs 

51.             world_file_name = re.sub('\.tif$', '.tfw', tiff) 

52.             new_world_file = path.join(target_folder, world_file_name) 

53.             shutil.copy(src_world_file, new_world_file) 

54.  

55.  

56.             # define projection for target tiffs 

57.             tiff_path = path.join(target_folder, tiff) 

58.             management.DefineProjection(tiff_path, src_tiff_srs) 

59.             print("spatial reference and georeference imported") 

60.  

61.  

62. #Written By dale from spatialRes.py 

63. #transfer Spatial Reference from and World Files 

64. def transferSpatialReferenceWorldFileDir(source_tif, target_folder, src_world_file): 

65.     #    Transfer spatial reference information from a a source raster to a set of 

66.     #    other rasters that have the same spatial reference values, but for which that 

67.     #    information is  not defined.  Load the georeference from a world file. 

68.     #    Use when spatial resolution has changed 

69.  

70.  

71.     # create world file from source raster 

72.     #management.ExportRasterWorldFile(source_tif) 

73.     #src_world_file = re.sub('\.tif$', '.tfw', source_tif) 

74.  

75.     # get source raster projection 

76.     src_tiff_srs = arcpy.Describe(source_tif).spatialReference 

77.  

78.     for tiff in os.listdir(target_folder): 

79.         if re.match('.+\.tif$', tiff): 

80.             # rename and copy world file to target tiffs 
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81.             world_file_name = re.sub('\.tif$', '.tfw', tiff) 

82.             new_world_file = path.join(target_folder, world_file_name) 

83.             if src_world_file != new_world_file: 

84.                 shutil.copy(src_world_file, new_world_file) 

85.  

86.             # define projection for target tiffs 

87.             tiff_path = path.join(target_folder, tiff) 

88.             management.DefineProjection(tiff_path, src_tiff_srs) 

89.             print ("    spatial reference imported") 

90.  

91.  

92.  

93.  

94. #Written By Enoch Levandovsky Started on 07/07/2019 Finished on 7/22/2019 

95.  

96. def AdjustCSVRatio(valPxLst30m): 

97.     largestX = 0 

98.     LargestY = 0 

99.     SmallestX = 100 

100.     SmallestY = 100 

101.     trues = 0 

102.     false = 0 

103.     with open(valPxLst30m) as csv_file: 

104.         csv_reader = csv.reader(csv_file, delimiter=',') 

105.         line_count = 0 

106.         data = list(csv.reader(open(valPxLst30m))) 

107.         for row in csv_reader: 

108.             if row[0] == 'Unburned': 

109.                 false+=1 

110.             elif row[0] == 'WhiteAsh' or row[0] == 'BlackAsh': 

111.                 trues += 1 

112.             if line_count == 0: 

113.                 line_count = line_count#do nothing 

114.             elif int(row[2]) < SmallestY: 

115.                 SmallestY = int(row[2]) 

116.             elif int(row[1]) < SmallestX: 

117.                 SmallestX = int(row[1]) 

118.             elif int(row[1]) > largestX: 

119.                 largestX = int(row[2]) 

120.             elif int(row[2]) > LargestY: 

121.                 LargestY = int(row[1]) 

122.  

123.  

124.  
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125.             line_count += 1 

126.  

127.         if trues < 5: 

128.             print ("Data may be too small to determine anything") 

129.             return 

130.         else: 

131.             targetfalse = int(trues * 1.05) 

132.             ratio = targetfalse*1.0 / false*1.0 

133.             i = 0 

134.             renamedfile = re.sub('\.csv$', 'New.csv', valPxLst30m) 

135.             with open(renamedfile,'wb')as file: 

136.                 writer = csv.writer(file) 

137.                 while i < line_count: 

138.  

139.                     if 'Unburned' == data[i][0] and targetfalse <= false and (data[i][1] == 

largestX or data[i][1] == SmallestX or data[i][2] == LargestY or data[i][2] == SmallestY ) 

and 'Label' != data[i][0]: 

140.                         false -= 1 

141.                     else: 

142.                         writer.writerow(data[i])  # write all non-matching rows 

143.                     i +=1 

144.  

145. print("Running Spacial Fire Detection and Burn Severity Experiment:\n") 

146.  

147.  

148.  

149.  

150. #/////////////////////////////////////////////////////////////// 

151. #this is input check and folder creation 

152. print('outFolder: '+outFolder) 

153. print('hyperspatial ortho: '+hypImg) 

154. print('Satalite Scene: '+SataliteScene) 

155. print('fireName: '+fireName) 

156. print('exePath: '+exePath) 

157.  

158. elevRasterPre = Raster(SataliteScene) 

159. toRes = elevRasterPre.meanCellWidth 

160. print('TargetResolution: '+ str(toRes)) 

161.  

162. arcpy.CheckOutExtension("Spatial") 

163.  

164. if os.path.exists(outFolder): 

165.     print('Deleting Output Folder') 

166.     shutil.rmtree(outFolder) 
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167. if not os.path.exists(outFolder): 

168.     os.mkdir(outFolder) 

169.  

170. if not os.path.exists(SataliteScene): 

171.     print('Satellite Scene not found') 

172.  

173.  

174. if not os.path.exists(hypImg): 

175.     print('Hyperspatial orthomosaic not found') 

176. #//////////////////////////////////////////////////////////// 

177.  

178.  

179. #//////////////////////////////////////////////////////////// 

180. # This is the Clipper that clips the Landsat 

181. #image Combine Part 1 of 2 

182. print("\n\nClipping LandSat Scene to extent of hyperImagery and snapping 

Hyper Imagery to landsat") 

183. print("Input1: " + hypImg) 

184. print("Input2: " + SataliteScene) 

185. print("Output1: " + outFolder+ "\\clipped\\" + fireName + 

"_landSat_clipped.tif") 

186. print("Output2: " + outFolder+ "\\clipped\\" + fireName + 

"_hyper_Snapped.tif") 

187. print("\tclipping....") 

188. hyperSnapped = outFolder+ "\\clipped\\" + fireName + "_hyper_Snapped.tif" 

189. SataliteSceneClipped = outFolder+ "\\clipped\\" + fireName + 

"_landSat_clipped.tif" 

190.  

191. if not os.path.exists(outFolder + "\\clipped"): 

192.     os.mkdir(outFolder+ "\\clipped") 

193.  

194. elevRaster = Raster(hypImg) 

195. myExtent = elevRaster.extent 

196.  

197. myExtentString = str(myExtent.XMin - 80) + " " + str(myExtent.YMin - 80) + " " + 

str(myExtent.XMax + 80) + " " + \ 

198.                  str(myExtent.YMax + 80) 

199.  

200. arcpy.Clip_management(in_raster=SataliteScene, rectangle=myExtentString, 

201.                   out_raster=(outFolder+ "\\clipped\\" + fireName + 

"_landSat_clipped.tif"), in_template_dataset="", 

202.                   nodata_value="-9999", clipping_geometry="NONE", 

maintain_clipping_extent="NO_MAINTAIN_EXTENT") 

203. print("Complete") 
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204. #///////////////////////////////////////////////////////////// 

205.  

206.  

207. print("\nFound bands #'s") 

208. if not os.path.exists(outFolder + "\\bandsclipped"): 

209.     os.mkdir(outFolder+ "\\bandsclipped") 

210. counterX = 1 

211.  

212. numberofbands = 0 

213. noBands = True 

214. while numberofbands <= 4:#9 is max amount of bands 

215.     locationString = bandslocation +'\\'+ str(counterX) +".tif" 

216.     if os.path.isfile(locationString): 

217.         noBands = False 

218.         print(counterX) 

219.  

220.         arcpy.Clip_management(in_raster=bandslocation+ '\\' + str(counterX) + 

".tif", rectangle=myExtentString, 

221.                               out_raster=(outFolder + "\\bandsclipped\\" + fireName + 

"_Band_"+ str(counterX) + "_landSat_clipped.tif"), 

222.                               in_template_dataset="", 

223.                               nodata_value="-9999", clipping_geometry="NONE", 

224.                               maintain_clipping_extent="NO_MAINTAIN_EXTENT") 

225.         numberofbands = numberofbands + 1 

226.  

227.     counterX = counterX + 1 

228.     if counterX == 9: 

229.         break 

230.  

231. if numberofbands == 5: 

232.     print ("Maximum Number of Bands reached") 

233. if noBands == True: 

234.     print("Could not find any bands... If this is a mistake... name the bands 

1.tif,4.tif,.... and so on") 

235. else: 

236.     print("Finished Finding Bands") 

237. #/////////////////////////////////////////////////////////////// 

238.  

239.  

240.  

241. # Snaps the Hyper imagery to be the same size as the clipped landsat image 

242. #image Combine Part 2 of 2 

243. snapcmd = exePath + "\\Snapper\\x64\\Release\\Snapper.exe \"" + hypImg + 

"\" \"" + (outFolder + "\\clipped\\" + \ 
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244.         fireName + "_landSat_clipped.tif") + "\" \""+ (outFolder + "\\clipped\\" + 

fireName + "_hyper\"")#+ "_Snapped.tif\"") 

245.  

246. print("\tsnapping...") 

247. errorcode = os.system(snapcmd) 

248.  

249. arcpy.DefineProjection_management(in_dataset=(outFolder + "\\clipped\\" + 

fireName + "_hyper_Snapped.tif"), 

250.                                   

coor_system="PROJCS['WGS_1984_UTM_Zone_11N',GEOGCS['GCS_WGS_1984',DATUM

['D_WGS_1984',SPHEROID['WGS_1984',6378137.0,298.257223563]],PRIMEM['Greenwic

h',0.0],UNIT['Degree',0.0174532925199433]],PROJECTION['Transverse_Mercator'],PARA

METER['False_Easting',500000.0],PARAMETER['False_Northing',0.0],PARAMETER['Centr

al_Meridian',-

117.0],PARAMETER['Scale_Factor',0.9996],PARAMETER['Latitude_Of_Origin',0.0],UNIT['

Meter',1.0]]") 

251.  

252.  

253. # if the file size is too large 

254. if errorcode == -2: 

255.     print("error, Image too large, Please crop out the images until it is less then 

around 1GB (NOTE: to check windows explorer should be able to calculate dimension of 

the image, If it donest its too large") 

256.     error = True 

257.         # This code will Make it run if the file is too large, but the image reduction 

algorithm below will not work 

258.         # arcpy.Clip_management(in_raster=hyperImagery, 

rectangle=myExtentString, 

259.         #                     out_raster=(targetFolder + FileName + "_Snapped.tif"), 

in_template_dataset="", 

260.         #                    nodata_value="-9999", clipping_geometry="NONE", 

maintain_clipping_extent="NO_MAINTAIN_EXTENT") 

261. print("Complete") 

262. #////////////////////////////////////////////////////////////// 

263.  

264.  

265.  

266. if SkipMainPictureTraining == False:#see note line: 

267. #////////////////////////////////////////////////////////////// 

268.     print("\nRunning SVM on inputed hyper Imagery") 

269.     print("Input: " + exePath + "\TrainImg.JPG") 

270.     print("Output1: " + outFolder+ "\\clipped\\" + fireName + 

"_svm_Train_con.tif") 
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271.     print("Output2: " + outFolder+ "\\clipped\\" + fireName + 

"_svm_Train_ext.tif") 

272.  

273.     TrainImg = exePath + "\TrainImg.JPG" 

274.     TrainConCSV = exePath + "\TrainCon.csv" 

275.     TrainExtCSV = exePath + "\TrainExt.csv" 

276.  

277.     svmExe = exePath + 

'\\SvmBurnClassifier\\x64\\Release\\SvmBurnClassifier.exe' 

278.     svmOutCon = outFolder + '\\TrainOutput\\' + fireName + '_svm_Train_con.tif' 

279.     svmOutExt = outFolder + '\\TrainOutput\\' + fireName + '_svm_Train_ext.tif' 

280.     classKey = exePath + '\\classKey.csv' 

281.     hyperSnapped = outFolder+ "\\clipped\\" + fireName + "_hyper_Snapped.tif" 

282.  

283.     if not os.path.exists(outFolder + "\\TrainOutput"): 

284.         os.mkdir(outFolder+ "\\TrainOutput") 

285.  

286.  

287.     print("Running SVM with Extent Training Data...") 

288.     svmCmd = svmExe + ' \"' + hyperSnapped + '\" \"' + svmOutExt + '\" \"' + 

classKey + '\" -p -tp \"' + TrainExtCSV + "\" -ti \"" + TrainImg + "\" -chi2   " 

289.     os.system(svmCmd) 

290.  

291.  

292.     print("Running SVM with Consumtion Training Data...") 

293.     svmCmd = svmExe + ' \"' + hyperSnapped + '\" \"' + svmOutCon + '\" \"' + 

classKey + '\" -p -tp \"' + TrainConCSV + "\" -ti \"" + TrainImg + "\" -chi2" 

294.  

295.     os.system(svmCmd) 

296.     #os.system(svmCmd)  # maby multi thread 

297.  

298.  

299.  

300.  

301.  

302.  

303.  

304.  

305.     transferSpatialGeoRefDir(hyperSnapped, outFolder + '\\TrainOutput') 

306.     print("Complete") 

307. #//////////////////////////////////////////////////////////////// 

308.  

309. if SkipMainPictureTraining == False:  # see note line: 

310. #//////////////////////////////////////////////////////////////// 
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311.  

312.     #this is because SVM changes the name for con and ext 

313.     svmOutCon = outFolder + '\\TrainOutput\\' + fireName + 

'_svm_Train_conCHI2.tif' 

314.     svmOutExt = outFolder + '\\TrainOutput\\' + fireName + 

'_svm_Train_extCHI2.tif' 

315.  

316.  

317.     print("Running Denoise on hyper Imagery") 

318.     print("Input1: " + svmOutExt) 

319.     print("Input2: " + svmOutCon) 

320.     print("Output: " + outFolder+ "\\denoise\\") 

321.  

322.     hypClasImg = outFolder + "\\denoise\\5_Output.tif" 

323.     denoiseExe = exePath + '\\denoise\\x64\\Release\\Denoise_v1.4.exe' 

324.     denoisecmd = denoiseExe +' \"' + svmOutExt + "\" -pf 1 4000 4000 \"" + 

svmOutCon + "\" -pf" 

325.  

326.     if not os.path.exists(outFolder + "\\denoise"): 

327.         os.mkdir(outFolder+ "\\denoise") 

328.  

329.     os.system(denoisecmd)#get RID OF THE OUTPUT MESS to increase speed 

330.     transferSpatialGeoRefDir(hyperSnapped, outFolder+ "\\denoise") 

331.     print("Complete") 

332. #//////////////////////////////////////////////////////////////// 

333.  

334.  

335. #//////////////////////////////////////////////////////////////// 

336. if SkipMainPictureTraining == True: 

337.     hypClasImg = exePath + "\\5_Output.tif" 

338. #//////////////////////////////////////////////////////////////// 

339.  

340.  

341. #//////////////////////////////////////////////////////////////// 

342. # Calculate 30m density from 5cm classification 

343. if not os.path.exists(outFolder+'\density'): 

344.     os.mkdir(outFolder+'\density') 

345. print("") 

346. print("Densifying ...") 

347. print("    hypClass: " + hypClasImg) 

348. print("    densBasename: " + outFolder + '\density\dens ') 

349. print("    toRes: "+ str(toRes)) 

350. densityCmd = exePath + '\\density\\x64\Debug\density.exe \"' + hypClasImg + 

'\" \"' + outFolder + '\density\dens\" ' + str(toRes) + ' 255' 
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351. #densityCmd = exePath + '\\density\\x64\Debug\density.exe ' + hypClass + ' ' + 

outFolder + '\density\dens ' + toRes 

352. os.system(densityCmd) 

353. transferSpatialReferenceWorldFileDir(hypImg, outFolder+'\density', outFolder + 

'\density\dens.tfw') 

354.  

355. if not os.path.exists(outFolder+'\\fuzzy'): 

356.     os.mkdir(outFolder+'\\fuzzy') 

357. fuzzyFolder = outFolder+'\\fuzzy' 

358. env.workspace = fuzzyFolder 

359.  

360. if not os.path.exists(outFolder+'\\val'): 

361.     os.mkdir(outFolder+'\\val') 

362. valFolder = outFolder+'\\val' 

363. #//////////////////////////////////////////////////////////////// 

364.  

365.  

366.  

367. #//////////////////////////////////////////////////////////////// 

368. # Calculate extent & combustion 

369. # BurnExtent = (WhiteAsh + BlackAsh+TreeIsland)/px 

370. densBlackAshPath = outFolder + '\\density\\dens_c2.tif' 

371. densWhiteAshPath = outFolder + '\\density\\dens_c3.tif' 

372. densNoDataPath = outFolder + '\\density\\dens_c255.tif' 

373. densBlack = Raster(densBlackAshPath) 

374. densWhite = Raster(densWhiteAshPath) 

375. densNoData = Raster(densNoDataPath) 

376. ext = densBlack + densWhite 

377.  

378. # Combustion = w/(w+b) - White ash cover? 

379. combust = arcpy.sa.Con(ext < 10, 0, densWhite*100/ext) 

380.  

381. ext.save(outFolder + "\\fuzzy\\ext.tif") 

382. combust.save(outFolder + "\\fuzzy\\comb.tif") 

383.  

384.  

385. # Fuzzy Set Membership 

386. print("Fuzzifying ...") 

387. # BurnExtent - Burned (type=linear, min=35, max=65) 

388. burn = arcpy.sa.FuzzyMembership(ext, FuzzyLinear(35,65), "NONE") 

389. # BurnExtent - unburned (type=linear, min=65, max=35) 

390. unburn = arcpy.sa.FuzzyMembership(ext, FuzzyLinear(65,35), "NONE") 
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391. # Combustion - Low (type=linear, min=40, max=15) - Lewis (2010) says transition 

should be 33/50, we are going lower so white ash registers - Lucky peak should get 

higher white ash 

392. lowComb = arcpy.sa.FuzzyMembership(combust, FuzzyLinear(50,33), "NONE") 

393. #lowComb = arcpy.sa.FuzzyMembership(combust, FuzzyLinear(40,15), "NONE") 

394. # Combustion - High (type=linear, min=15, max=40) 

395. hiComb = arcpy.sa.FuzzyMembership(combust, FuzzyLinear(33,50), "NONE") 

396. #hiComb = arcpy.sa.FuzzyMembership(combust, FuzzyLinear(15,40), "NONE") 

397.  

398. burn.save(outFolder + "\\fuzzy\\burn.tif") 

399. unburn.save(outFolder + "\\fuzzy\\unburn.tif") 

400. lowComb.save(outFolder + "\\fuzzy\\lowComb.tif") 

401. hiComb.save(outFolder + "\\fuzzy\\hiComb.tif") 

402.  

403. # *** DAH: High combustion and low combustion are both very low,  Multiply 

by 100 and look at histogram 

404.  

405. # We are not looking at canopy cover because we're working with rangeland. 

There should not be enough hyperspectral pixels to swing 30m pixel to canopy fuels 

406.  

407. # Apply Fuzzy Logic and activate fuzzy rules 

408. print("Activate fuzzy logic rules ...") 

409. # If (ext:burned && com:high) -> white ash 

410. whiteAsh = arcpy.sa.FuzzyOverlay([burn, hiComb], "AND") 

411. # If (ext:burned && com:low) -> black ash 

412. blackAsh = arcpy.sa.FuzzyOverlay([burn, lowComb], "AND") 

413. # If (ext:unburned) -> unburned 

414. # Missing this fuzzyOverlay - we can just use the density of unburned. - YES 

415.  

416. whiteAsh.save(outFolder + "\\fuzzy\\whiteAsh.tif") 

417. blackAsh.save(outFolder + "\\fuzzy\\blackAsh.tif") 

418.  

419. # Get rule w/ highest membership 

420. dom = HighestPosition([unburn,blackAsh,whiteAsh,densNoData]) 

421. dom.save(outFolder + "\\fuzzy\\dom.tif") 

422.  

423. # Translate rule# to class w/ Reclass 

424. recls30m = Reclassify(dom, "Value", RemapValue([[1, 0], [2, 2], [3, 3], [4, 255]])) 

425. #recls30m.save(outFolder + "\\fuzzy\\domCls30m.tif") 

426. arcpy.CopyRaster_management(recls30m, outFolder + 

"\\fuzzy\\domCls30m.tif",pixel_type="8_BIT_UNSIGNED", format="TIFF") 

427. #//////////////////////////////////////////////////////////////// 

428.  

429.  
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430.  

431. #//////////////////////////////////////////////////////////////// 

432. # Segment 30m data into training & validation data 

433. print("\n\nCreate 30m training pixel list") 

434. coordSel30mCmd = exePath + '\\coordSel30m\\x64\Release\coordSel30m.exe 

\"' + outFolder + "\\fuzzy\\domCls30m.tif\" \"" + \ 

435.                  exePath + "\\classKey.csv\" \"" + outFolder + "\\" + fireName 

+"_cls30m 30\"" 

436. # Inputs 

437. #   30m classification derived from 5cm classification 

438. #   Attribute table file 

439. #   train/validation base path. 

440. #   Will append  _trn.csv & _val.csv 

441. #   Withholding rate 

442. os.system(coordSel30mCmd) 

443. #//////////////////////////////////////////////////////////////// 

444.  

445.  

446.  

447.  

448. #//////////////////////////////////////////////////////////////// 

449. # Run svm on 30m image - training data derived from 5cm classification 

450. print('SVM running at 30m...') 

451.  

452. trnPxLst30m = outFolder + '\\' + fireName +'_cls30m 30_trn.csv' 

453. valPxLst30m = outFolder + '\\' + fireName +'_cls30m 30_val.csv' 

454. svmExe = exePath + '\\SvmBurnClassifier\\x64\\Release\\SvmBurnClassifier.exe' 

455. #svmExe = 

'C:\\NNU\\FireMAP\\ClassifiersOpenCV\\SvmBurnClassifier\\x64\\Release\\SvmBurnCla

ssifier.exe' 

456. svmOut = valFolder + '\\svm_30m_out.tif' 

457. classKey = exePath + '\\classKey.csv' 

458.  

459.      

460. #///////////////////////////////////// 

461. #MultiBand Proccessor 

462. bandsString = "" 

463.  

464. #default with no extentions 

465. svmCmd = svmExe + ' \"' + SataliteSceneClipped + '\" \"' + svmOut + '\" \"' + 

classKey + '\" -p -tp \"' + valPxLst30m + "\" -ti \"" + SataliteSceneClipped + '\"' 

466. #svmCmd = svmExe + ' \"' + SataliteScene + '\" \"' + svmOut + '\" \"' + classKey + 

'\" -p -tp \"' + trnPxLst30m + "\" -ti \"" + SataliteSceneClipped + '\" -vp \"' + valPxLst30m 

+ "\"" 
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467. #switch these two have final output on clipped or entire scene 

468.  

469. counterX = 1 

470. while counterX <= 9:#9 is max amountoutFolder of bands 

471.     locationString = bandslocation +'\\'+ str(counterX) +".tif" 

472.     if os.path.isfile(locationString): 

473.         bandsString = bandsString + " -ct \"" + outFolder + "\\bandsclipped\\" + 

fireName + "_Band_"+ str(counterX) + "_landSat_clipped.tif\" -ci \"" + outFolder + 

"\\bandsclipped\\" + fireName + "_Band_"+ str(counterX) + "_landSat_clipped.tif\"" 

474.         #bandsString = bandsString + " -ct \"" + outFolder + "\\bandsclipped\\" + 

fireName + "_Band_"+ str(counterX) + "_landSat_clipped.tif\" -ci \"" + bandslocation + 

"\\"+ str(counterX) + ".tif\"" 

475.         #switch these two have final output on clipped or entire scene 

476.  

477.     counterX = counterX + 1 

478.  

479.  

480.  

481.  

482.  

483.  

484. #///////////////////////////////////// 

485. svmCmdL = svmCmd + bandsString + " -linear" 

486. os.system(svmCmdL) 

487. svmCmdC = svmCmd + bandsString + " -chi2" 

488. os.system(svmCmdC) 

489. #svmCmdR = svmCmd + bandsString + " -rbf" 

490. #os.system(svmCmdR) 

491.  

492. transferSpatialGeoRefDir(SataliteSceneClipped, outFolder+'\\val') 

493.  

494.  

495. AdjustCSVRatio(trnPxLst30m) 

496.  

497. percentageCheckerCMD = exePath + "\\percentage_Checker.exe" + " \"" + 

valFolder + '\\svm_30m_outCHI2.tif\" \"' + re.sub('\.csv$', 'New.csv', trnPxLst30m) + "\"" 

498.  

499. os.system(percentageCheckerCMD) 

500. print("Done") 

501. #//////////////////////////////////////////// 
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